

Surname	Centre Number	Candidate Number
First name(s)		2

GCE AS/A LEVEL

2305U10-1

S24-2305U10-1

MONDAY, 13 MAY 2024 – AFTERNOON

FURTHER MATHEMATICS – AS unit 1 **FURTHER PURE MATHEMATICS A**

1 hour 30 minutes

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1	5	
2	3	
3	6	
4	10	
5	7	
6	12	
7	7	
8	12	
9	8	
Total	70	

2305U10-1
01

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The maximum mark for this paper is 70.

The number of marks is given in brackets at the end of each question or part-question.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

Answers without working may not gain full credit.

Unless the degree of accuracy is stated in the question, answers should be rounded appropriately.

You are reminded of the necessity for good English and orderly presentation in your answers.

JUN242305U10101

Reminder: Sufficient working must be shown to demonstrate the **mathematical** method employed.

1. The complex numbers z , v and w are related by the equation

$$z = \frac{v}{w}.$$

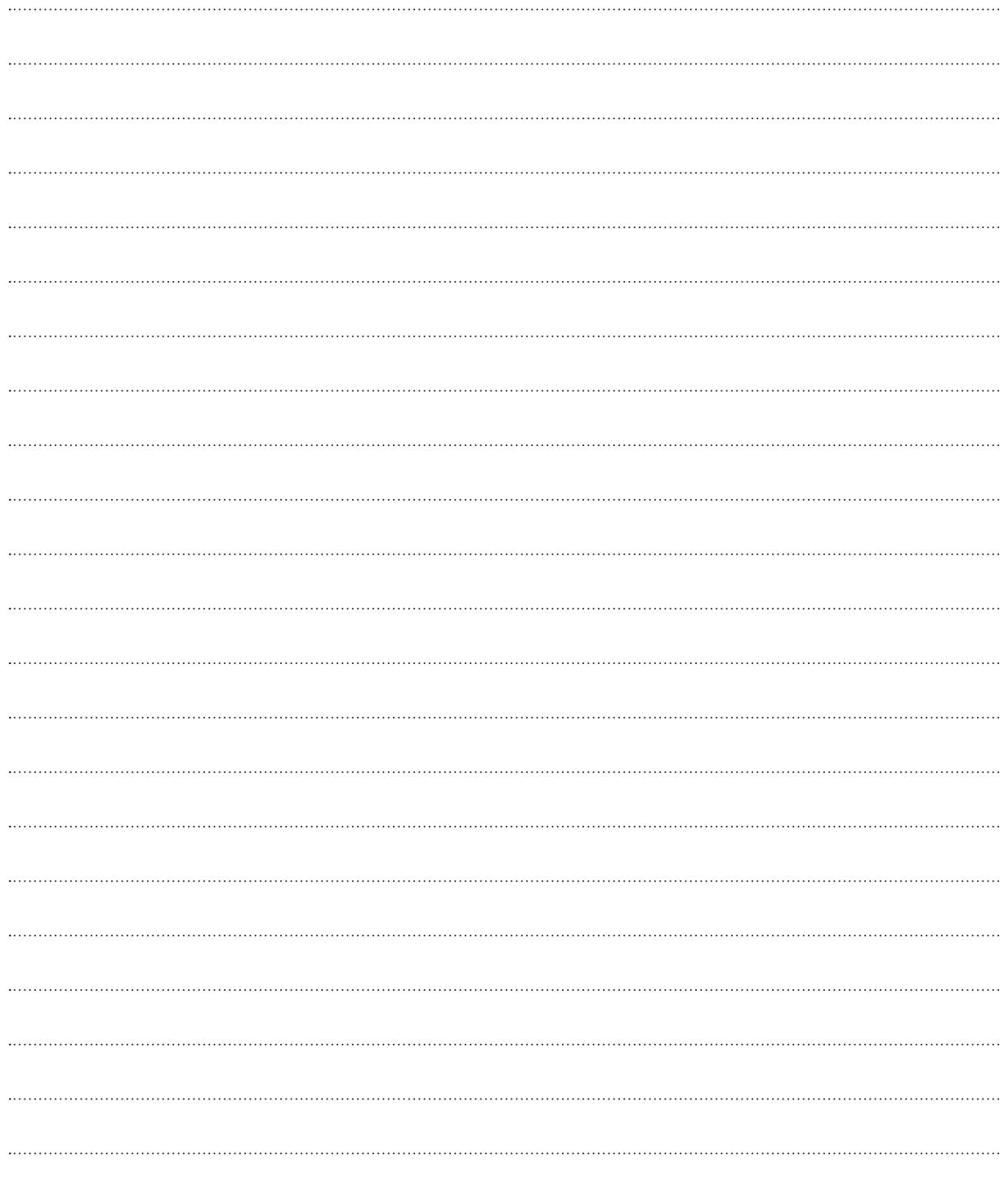
Given that $v = -16 + 11i$ and $w = 5 + 2i$, find z in the form $r(\cos\theta + i\sin\theta)$.

[5]

2. Given that $x^2 + 4x + 5$ is a factor of $x^3 + x^2 - 7x - 15$, solve the equation $x^3 + x^2 - 7x - 15 = 0$.

[3]

2305U101
03



3. The quadratic equation $x^2 + px + q = 0$ has a repeated root α .

A new quadratic equation has a repeated root $\frac{1}{\alpha}$ and is of the form $x^2 + mx + m = 0$.

Find the values of p and q in the original equation.

[6]

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

2305U101
05

05

Examiner
only

4. The complex numbers z and w are represented, respectively, by the points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$w = \frac{z}{1-z}.$$

(a) Show that $v = \frac{y}{(1-x)^2 + y^2}$ and obtain an expression for u in terms of x and y . [5]

(b) The point P moves along the line $y = 1 - x$. Find and simplify the equation of the locus of Q . [5]

Examiner
only

5. Given that

$$\sum_{r=k}^{76} (r-31) = 980,$$

show that there are two possible values of k .

[7]

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

2305U101
09

09

Examiner
only

6. The complex number z is represented by the point $P(x, y)$ in an Argand diagram.

Two loci, L_1 and L_2 , are given by:

$$L_1: |z - 2 + i| = |z + 2 - 3i|,$$

$$L_2 : |z - 2 + i| = \sqrt{10}.$$

(a) Find the coordinates of the points of intersection of these loci.

[9]

Examiner
only

(b) On the same Argand diagram, sketch the loci L_1 and L_2 . Clearly label the coordinates of the points of intersection. [3]

Examiner
only

7. Prove, by mathematical induction, that $13^{(2n-1)} + 8$ is a multiple of 7 for all positive integers n . [

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

8. A point P is reflected in the line $y = kx$, where k is a constant. It is then rotated anticlockwise about O through an acute angle θ , where $\cos \theta = 0.8$. The resulting transformation matrix is given by T , where

$$T = \frac{1}{85} \begin{bmatrix} -84 & -13 \\ -13 & 84 \end{bmatrix}.$$

(a) Determine the value of k .

[9]

Examiner
only

(b) Find the invariant points of T .

[3]

15

9. Two planes, Π_1 and Π_2 , are defined by

$$II_1: 4x - 3y + 2z = 5,$$

$$II_2: 6x + y + z = 9.$$

(a) Find the acute angle between the planes Π_1 and Π_2 . Give your answer correct to three significant figures. [4]

[4]

Examiner
only

(b) Find the perpendicular distance from the point $A(5, -2, -6)$ to the plane Π_1 . [2]

(c) (i) Show that the point $B(5, 5, 0)$ lies on Π_1 and that the point $C(1, 3, 0)$ lies on Π_2 .
(ii) State an equation of a plane that contains the points B and C . [2]

END OF PAPER

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

